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NATURE OF STATIONARITY OF THE NATURAL
FREQUENCIES AT THE NATURAL MODES

IN THE RAYLEIGH–RITZ METHOD
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A variational formulation of the Rayleigh–Ritz method to obtain approximate natural
frequencies and natural modes is presented. The stationarity of the natural frequencies with
respect to the arbitrary coefficients in the linear combination of the assumed deflection
shapes, and also at the natural modes is investigated. It is concluded that the natural
frequencies are stationary and need not always be minimum, with respect to the arbitrary
coefficients; however, they are minimum with respect to the natural modes. This may
provide a means of checking the accuracy of the computed natural frequencies obtained
by using energy techniques such as the Rayleigh–Ritz, Galerkin, and finite element
methods.
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1. INTRODUCTION

In the Rayleigh–Ritz method, the vibration deflection shapes are assumed to be in the form
of a linear combination of functions which satisfy at least the geometrical boundary
conditions of the vibrating structure. The maximum potential and kinetic energies
formulated using these deflection shapes are used to obtain an expression for the natural
frequency in the form of the Rayleigh quotient. At this point, the coefficients of the linear
combination of terms are adjusted so that the frequency is made stationary at the natural
modes, in conformity with Rayleigh’s principle. This results in as many linear equations
as the number of arbitrary coefficients considered in the linear combination in the form
of an eigenvalue problem. The solution of this eigenvalue problem provides the natural
frequencies and the associated natural modes.

The Rayleigh–Ritz method assumes a harmonic motion in free vibration and employs
the condition that maximum kinetic energy is equal to maximum potential energy, which
however occur a quarter period apart from each. The Rayleigh–Ritz method has been
shown to be a form of variational method using Hamilton’s principle in a generalized
co-ordinate function space [1–3]. The Rayleigh–Ritz method must consider a complete set
of assumed deflection functions that satisfy at least the geometrical boundary conditions.
Theoretically, it can compute exact natural frequencies and the associated natural modes
if the assumed deflection functions form a complete set. Further, as rightly pointed out
in some recent books on vibration such as by Rao [4], the process only makes the computed
natural frequencies stationary with respect to the coefficients in the linear combination of
the assumed deflection functions, and not ‘‘minimum’’ with respect to them, as described
in some vibration text books [5, 6]. The requirement of the assumed deflection shapes to
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satisfy ‘‘at least the geometrical boundary conditions’’ is not explained often, which
becomes clear when the variational formulation is examined.

2. SOME RESULTS FROM VARIATIONAL FORMULATION

Assuming that all the applied forces are derivable from a potential function V, one can
write [2]

g
t2

t1

d(T−V) dt=0, (1)

where T is the kinetic energy, t1 and t2 are the times at which configurations of the system
are specified and d is the variation. The present discussion is illustrated using a
one-dimensional continuous system such as an elastic beam, which in no way compromises
the generality of the principles involved. The kinetic and potential energy expressions of
the beam are given by

T= 1
2g

L

0

m(x)ẇ2(x, t) dx, V= 1
2g

L

0

EI(x)[w0(x, t)]2 dx, (2, 3)

where m(x) is the mass per unit length, EI(x) is the bending rigidity, L is the length of
the beam and w(x, t) is the beam deflection as a function of the spatial co-ordinate x and
the time t. Expressing the deflection w(x, t) in separable form in space and time domains,
one can write

w(x, t)=X(x)T(t). (4)

Substituting equation (4) into equations (2) and (3), the variation in equation (1) can be
written as

g
t2

t1
$g

L

0

mẇdẇ dx−g
L

0

EIw0dw0 dx% dt=0, (5)

where mass m and bending rigidity EI are assumed constant.
The variation in w(x, t) can be expressed as

dw(x, t)= dX(x) · T(t)+X(x) · dT(t). (6)

Substituting equation (6) into equation (5) results in

g
t2

t1
6$g

L

0

mXT� 2dX dx−g
L

0

EIX0T 2dX0 dx%
+$g

L

0

mX 2T� dT� dx−g
L

0

EIX02TdT dx%7 dt=0. (7)

The terms containing dT� and dX0 are integrated by parts using the conditions that the
system configurations are defined and do not allow variations at t1 and t2. Further, it is
also noted that the variations are consistent with the boundary conditions at x=0 and
L. This means that the variations in the deflection must not violate the geometrical
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boundary conditions at x=0 and L. Consequently, equation (7) can be obtained in the
form

g
t2

t1
6$g

L

0

mXT� 2 dx−EIX00T 2 dx%dX−$g
L

0

mX2T� dx+g
L

0

EIX02T dx%dT7 dt=0. (8)

Interchanging the order of integration in the first half of equation (8) one obtains

g
L

0 6mX0g
t2

t1

T� 2 dt1−EIX'10g
t2

t1

T 2 dt17dX dx

−g
t2

t1
6T� 0g

L

0

mX 2 dx1+T0g
L

0

EIX02 dx17dT dt=0. (9)

Since the variations dX and dT are quite arbitrary, their coefficient terms must
independently be zero. Consequently, one obtains two differential equations from equation
(9):

T� 0g
L

0

mX 2 dx1+T0g
L

0

EIX02 dx1=0, mX0g
t2

t1

T� 2 dt1−EIX'10g
t2

t1

T 2 dt1=0.

(10, 11)

Equation (10) has a simple harmonic solution of the type T(t)=A cos vt+B sin vt,
where

v2 =$EI g
L

0

[X0(x)]2 dx%>$m g
L

0

X 2(x) dx%. (12)

In view of the harmonic nature of T(t), one has f T� 2 dt=v2 f T 2 dt when the integration
is carried over a very long time or over a period. The function X(x) is obtained by solving
the boundary value problem presented by equation (11), having an infinite number of
solutions of the type fi (x) which are the natural modes with the associated natural
frequencies vi . The complete solution for w(x, t) can be written as

w(x, t)= s
a

i=1

fi (x)qi (t), (13)

where qi (t)=Ai cos vit+Bi sin vit, the infinite number of terms for T(t) corresponding
to vi . When it is difficult to solve the boundary value problem posed in equation (11), an
approximate solution is obtained using the Rayleigh–Ritz method where the solution of
the type

X(x)= s
n

i=1

Qi fi (x) (14)

is assumed. The function X(x) is expressed in terms of the generalized co-ordinates Qi in
the function space defined by fi (x). The functions fi (x) must satisfy at least the geometrical
boundary conditions, which is in conformity with the requirement for the generalized
co-ordinate functions to have their variations to be consistent with the geometrical
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constraints. As is well known, neither fi (x), nor the eigenvectors obtained by the analysis
using a truncated series in equation (14) provide the exact natural modes. In the usual
Rayleigh–Ritz formulation, the maximum kinetic and potential energies obtained using the
assumed deflection shapes in equation (14) are equated, i.e., Umax =Tmax =T*maxv

2, and the
natural frequencies are obtained in the form

v2 = [Umax(Q1, Q2, Q3, . . .)]/[T*max(Q1, Q2, Q3, . . . )]. (15)

Equation (15) can also be seen as a direct consequence of equation (12) following the
variational formulation. The natural frequencies are obtained from equation (15) by the
condition

1v2/1Qj =0, j=1, 2, . . . , n, (16)

which results in an eigenvalue problem of the type

[K]{Q}−v2[M]{Q}= 0. (17)

The eigenvalues of this problem will provide exact natural frequencies only if fi (x)0fi (x).
In such a case, matrices [K] and [M] are purely diagonal and one has

12v2/1Q 2
j =Kjj −v2Mjj =0 (18)

at the squared natural frequencies v2 =v2
i , indicating that the v2

i are not stationary with
respect to coefficients Q j at all. However, if fi (x)$fi (x), then the second variation of v2

with respect to Q j will be positive if v2 is a minimum with respect to Q j and will be negative
if v2 is maximum with respect to Q j . Hence v2

i is a minimum if the matrix [K−v2
i M] is

positive definite, while it corresponds to a maximum if [K−v2
i M] is not positive definite.

This is illustrated using the example of a cantilever beam. The deflection shape is assumed
in the form

X(x)= s
4

j=1

Q jx1+ j (19)

using four terms, where each term satisfies the geometrical boundary conditions at x=0.
One obtains

K L K L4 6 8 10 1/5 1/6 1/7 1/8
G G G G6 12 18 24 1/6 1/7 1/8 1/9
G G G G[K]=

8 18 28·8 40
, [M]=

1/7 1/8 1/9 1/10
. (20)

G G G G
10 24 40 400/7 1/8 1/9 1/10 1/11k l k l

The eigenvalues are obtained as

p1, p2, p3, p4 = (EI/ml4) (3·516, 22·158, 63·347, 281·596)

and the coefficients Qi at each of the eigenvalues are

F J F J F J0·913 0·373 −0·154
G G G G G G−0·400 −0·797 0·602
g h g h g h{Q}(1) =

−0·052
, {Q}(2) =

0·469
, {Q}(3) =

−0·732
,

G G G G G G
0·059 −0·074 0·279f j f j f j
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−0·097

0·492
{Q}(4) =g

G

G

F

f
−0·775

h
G

G

J

j

.

0·384

One has [K− v2
1M] positive definite, while [K−v2

i M] for i=2, 3, 4 are not positive
definite.

Now a natural frequency at a given stationary point with respect to the jth co-ordinate
direction (arbitrary coefficient in the Rayleigh–Ritz method) is examined. One can do that
by examining whether (Kjj −v2

i M) is greater or less than zero. This is illustrated in
Figures 1(a)–1(p) where variation of v2

i with Q j are plotted at each of the modes, while
keeping Qk , k$ j, constant. It can be seen that 1v2/1Q j =0 corresponds to a minimum
whenever Kjj −v2

i Mjj q 0. As an example note that K11 =4 and M11 =1/5, and for i=1
one has [4− (1/5)v2

1 q 0]. Hence 1v2
1 /1Q1 =0 corresponds to a minimum for v2

1 with
respect to Q1 in the neighbourhood of the first natural mode. Similarly one can verify that
Kjj −v2

1Mjj q 0 for j=2, 3, 4. Hence v2
1 is a minimum with respect to Q j , j=2, 3, 4 also.

As can be seen from Figure 1(h), v2
2 is a minimum with respect to Q4 since

K44 −v2
2M44 q 0. Further, Kjj −v2

2 Mjj Q 0 for j=2, 3, 4. Hence 1v2
2 /1Q j =0 corresponds

to maximum values of v2
2 , which can be verified from Figures 1(e)–1(g). Also, the v2

i for
i=3, 4, are maximum with respect to Q j , j=2, 3, 4 in the neighbourhood of the
corresponding natural modes.

Figure 1. Frequency variation with Qj in the neighbourhood of natural modes: v2
1 as function of (a) Q1, (b)

Q2, (c) Q3, (d) Q4; v2
2 as function of (e) Q1, (f) Q2, (g) Q3, (h) Q4; v2

3 as function of (i) Q1, (j) Q2, (k) Q3, (l) Q4;
v2

4 as function of (m) Q1, (n) Q2, (o) Q3, (p) Q4.
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The above condition holds good even if the structure is unconstrained and the
‘‘fundamental frequency’’ corresponds to the rigid body mode and the natural frequency
is zero, the case discussed in Badrakhan [7]. In his example of a free–free beam, he uses
the deflection function of

y= y0 sin (px)− h. (21)

This function was chosen by Den Hartog [8] to illustrate Rayleigh’s method. Even though
it seems to be a single term approximation, strictly there are two terms attached with the
two unknown coefficients, y0 and h, and hence it corresponds to the Rayleigh–Ritz method.
If v2 is optimized with respect to h using the Rayleigh’s method formulation, there are
two resulting natural frequencies, 0 and 22·676(EI/ml4)1/2. If the chosen single term is y= h,
this will give zero natural frequency in the Rayleigh’s method. If two terms as in equation
(21) are used in the Rayleigh–Ritz method, then the two resulting frequencies are upper
bounds for the first two natural frequencies. Badrakhan reported that assuming h=0·7y0

gave a frequency of 22·21(EI/ml4)1/2 which is lower than the exact value of the first bending
natural frequency. However, by preassigning a value to h, the resulting expression

y= y0 (sin px0 −0·7) (22)

becomes a single term approximation for the deflection shape. Even though this expression
is assumed in the hope that it will represent the first bending mode of the free–free beam,
the Rayleigh analysis tries to represent a rigid body mode with frequency of zero with this
expression, rather unsuccessfully. An intuitive single term approximation for a higher
mode providing a lower value for the natural frequency than that provided by the
Rayleigh–Ritz analysis, was also reported by Leissa [9]. An explanation for this type of
result was provided by Bhat [10], wherein he expanded the single term approximation in
terms of a generalized Fourier series using the exact natural mode functions and showed
that the computed frequency is influenced by the contribution of different natural modes
in the assumed deflection function. Applying that reasoning, it is clear that when the
contribution of the rigid body mode in the expression in equation (22) is maximized, the
contribution of the sine term also increases automatically. Hence the resulting frequency
of 22·21(EI/ml4)1/2 is a very poor approximation for the natural frequency of the rigid body
mode, even though it appears close to that of the first bending mode. When the two term
shape of equation (21) is used, 1v2/1h=0 provides a minimum for the Rayleigh quotient
at v=0, but a maximum at v=22·676(EI/ml4)1/2. The reason for this is obvious because
at h=2y0/p obtained by the Rayleigh–Ritz analysis, one has 12v2/1h2 Q 0 at the frequency
of 22·676(EI/ml4)1/2. This illustrates clearly that the computed natural frequency need not
be a minimum with respect to the arbitrary coefficients. The condition of 1v2/1Qj =0 is
only a condition of stationarity and not the condition for minimum natural frequency with
respect to the arbitrary coefficients Q j .

3. VARIATION OF NATURAL FREQUENCIES WITH NATURAL MODES

The general variation in w(x, t) is given in equation (6). Out of this, the variation in
the deflection function X(x) resulted in the expression for the natural frequency given in
equation (12). The function X(x) itself was obtained by solving equation (11) in terms of
the natural modes fi (x) and the corresponding natural frequencies vi . When an exact
solution for X(x) is not possible, an approximate solution is considered as a linear
combination of assumed deflection functions each of which satisfy at least the geometrical
boundary conditions. The frequency expression in equation (12) is made stationary with
respect to the arbitrary coefficients Qj , one at a time. However, we know that each natural
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mode is a specific combination of coefficients Qj . Hence, variation in X(x), i.e. dX, can
be accomplished by varying the form of the deflection function itself, by cruising along
the frequency domain, in contrast to varying only the coefficients Qj in the linear
combination of constant functions fj (x). In this way the deflection function passes through
different modes successively. This can be accomplished as follows.

Let fi (x) in equation (14) be the exact natural modes fi (x), i=1, 2, 3, . . . with the
corresponding natural frequencies pi such that p1 Q p2 Q p3 Q , . . . ,Q pn . Then equation
(14) becomes

X(x)= s
a

i=1

Qi fi (x). (23)

The terms Qi are in fact the modal co-ordinates. In order to represent X(x) all along the
frequency range, Hurty and Rubinstein [11] used the Lagrangian interpolation
polynomials [12] and consequently, in the place of equation (23), they used

X(x, p)= s
n

i=1

Li (p)fi (x), (24)

where p is frequency and Li (p) are the Lagrangian coefficient polynomials

Li (p)= t
n

k=1

k$ i

(p− pk )
(pi − pk )

(25)

with pi as the ith natural frequency. Lagrange coefficient polynomials have the property
given by

Li (p)=61,
0,

p= pi ,
p$ pi .

(26)

Consequently, at p= pr one obtains

X(x)=Lr (p)fr (x). (27)

Substituting from equation (25) into equation (24) and using equation (12) one gets v2 as
a function of a single parameter p as

v2(p)= s
n

i=1

KiL2
i (p)>s

n

i=1

MiL2
i (p), (28)

where

Ki =EI g
L

0

[f0(x)]2 dx, Mi =m g
L

0

f2
i (x) dx. (29)

Note that if p= pr , then

v2(pr )=Kr /Mr =v2
r . (30)
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Figure 2. Frequency variation with deflection shape interpolated between natural modes using Lagrangian
polynomials, with exact natural modes for a simply-supported beam.

Upon differentiation of v2 in equation (28) with respect to p, it is found that the derivative
vanishes at p= pr , showing that the squared natural frequency v2 is stationary at the
natural modes.

In order to illustrate the nature of v2 at the natural modes, the example of a
simply-supported beam is used. The natural modes are

fi (x)=z2 sin ipx (31)

and pi = i2p2z(EI/mL4). Further, Ki =EIi4p4/mL3, Mi =mL, and the frequency is

v2(p)=v2
1 s

n

i=1

i4L2
i (p)>s

n

i=1

L2
i (p), (32)

where v2
1 = p4EI/ml4, the square of the fundamental natural frequency. For numerical

computations pi may be assigned integral values for convenience, since this maneuver only
assigns a unique scale factor to the p-axis. Plots of (v2(p)/v2

1 ) against p are given in
Figure 2 for i=1–6. It can be seen that v2 is a minimum, in general, at the natural modes.
However, it becomes a maximum at the last one or two natural modes, where it is
truncated. This is because equation (24) cannot represent the deflection satisfactorily in
the neighbourhood of the last few modes where the series is truncated.

Lagrangian polynomials provide one way of smoothly changing the deflection shape
from one natural mode to another and in between. However, it is not unique. Even though
Lr (pr )=1 and Lr (ps )=0 for s$ r, the variation of these coefficient polynomials in
between the natural frequencies is not satisfactory as can be seen from Figure 3. A
device is proposed here in which the response of a beam to a point force (located in
such a way as to excite all the modes under consideration) is used to represent the
smooth change of the deflection shape in between and at the natural modes. The steady
state response will be identical to the natural modes at the corresponding natural
frequencies and will vary smoothly and realistically in between the natural frequencies.
This is accomplished as follows. The differential equation of motion for the beam is given
by

EIwiv(x, t)+mẅ(x, t)= f(x, t), (33)
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where f(x, t) is the distributed load on the beam. Taking Fourier transforms on both sides
one has

EIXiv(x, p)−mp2X(x, p)=F(x, p). (34)

From the homogeneous form of equation (34) given by

EIXiv(x, p)−mp2X(x, p)=0 (35)

one can solve for the natural frequencies pi and the corresponding natural modes fi (x).
Using them in equation (35) one gets

EIfiv
i (x, p)=mp2fi (x, p). (36)

The deflection of the beam for the non-homogeneous case is assumed in the form given
in equation (23) with X(x) expressed as X(x, p), from which one gets

Qi (p)=$g
L

0

X(x, p)fi (x) dx%>$g
L

0

f2
i (x) dx%. (37)

Substituting this in equation (34) and considering a point force at x= x0, one gets

Qi (p)=EIFfi (x0)/mL4(p2
i − p2), (38)

where F is the amplitude of the point force. Proceeding as in the previous case, one obtains
for a simply-supported beam

v2(p)=v2
1 s

n

i=1

i4
sin2 ipx0

(p2
i − p2)>s

n

i=1

sin2 ipx0

(p2
i − p2)

. (39)

At any natural frequency, say p= pk .

v2(pk )=v2
1 $k4 sin2 kpx0

(p2
k − p2)%>$sin2 kpx0

(p2
k − p2)%=v2

1k4. (40)

A very small damping term is used for the purpose of numerical evaluation of equation
(39). Accordingly, the denominator is taken as (p2

i − p2 + o), where o is arbitrarily taken
as 10−10. Again (v2/v2

1 ) is plotted in Figure 4 for i=1–6. It is seen that v2 is minimum

Figure 3. Lagrange coefficient polynomials.



6

1500

0

p

ω

500

2

2

1000

4

5

200

p

Q
i 
(p

)

100

3 421
0

Q1 Q2

Q4

Q5

Q3

. . 260

Figure 4. Frequency variation with deflection shape interpolated between natural modes using modal response
functions, with exact natural modes for a simply-supported beam.

at the natural frequencies except for the last few modes in the truncated sequence. The
modal response expressions, Qi (p), are plotted against p in Figure 5 that can be compared
with the Lagrangian coefficient polynomials shown in Figure 3. It is seen that the modal
response Qi (p) is more realistic for the representation of deflection shape in between the
natural modes.

If the natural frequencies and the natural modes computed using the Rayleigh–Ritz
method are used in equation (23), the expression for v2(p) in equation (28) is still valid
except that the terms Ki and Mi are the generalized stiffness and generalized mass for the
ith mode. They can be easily obtained as the ith diagonalized elements of the generalized
stiffness and generalized mass matrices [f]T[K][f] and [f]T[M][f]. This is applied on the
example of the cantilever beam using the deflection function described in equation (19) and
using the stiffness and mass matrices given in equation (20). The result is shown in Figure 6.
It is seen that the first computed natural frequency is minimum at the first computed
natural mode, however, the higher natural frequencies become maximum at the
corresponding natural modes. Further, an example of a simply-supported square plate is
considered to study the variation of v2 with the natural modes considering 36 exact natural
modes of the type fmn (x)= sin (mpx/L) sin (npy/L) with their corresponding natural
frequencies, and also the natural modes and natural frequencies obtained by using

Figure 5. Modal response functions.
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Figure 6. Frequency variation with deflection shape interpolated between natural modes using Lagrangian
polynomials, with natural modes computed by the Rayleigh–Ritz method for a cantilever beam.

boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method [13]. The
results are shown in Figures 7 and 8. The natural frequencies are minimum with respect
to the natural modes up to the 15th mode in both cases. However, after that they are
maximum at the natural modes. This is quite understandable because the series
representation of the deflection in equation (24) is valid only when an infinite number of
terms are considered. When the series is truncated, the representation of the deflection
shape will be poor for higher modes. From Figures 7 and 8, it can also be seen that the
natural frequencies computed by the Rayleigh–Ritz method are very high compared to
their exact values. This discrepancy can be reduced by choosing the assumed deflection
functions as close to the exact mode shapes as possible. One way of achieving this for plates
is to use the plate characteristic functions for the assumed deflection shapes [14, 15].

Further, it is noted that the method of optimizing an exponent to obtain the natural
frequency as proposed by Lord Rayleigh [16] originally and popularized by Schmidt [17],
Bert [18] and Laura [19] involves varying the form of the space function X(x) itself to arrive

Figure 7. Frequency variation with deflection shape interpolated between natural modes using Lagrangian
polynomials, with exact natural modes as well as those computed using the Rayleigh–Ritz method, for a
simply-supported plate.
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Figure 8. Frequency variation with deflection shape interpolated between natural modes using modal response
functions, with exact natural modes as well as those computed using the Rayleigh–Ritz method, for a
simply-supported plate.

at a minimum for the natural frequency at the natural mode. Laura and Cortinez [20]
extended the method of optimizing an exponent in an ingenious way to optimize the space
functions X(x) corresponding to the higher natural modes also, for the first time, and
achieved accurate higher eigenvalues. The above findings lead to a possibility of checking
the accuracy of the computed natural frequencies obtained by energy techniques such as
the Rayleigh–Ritz method, the Galerkin method, and the finite element methods, by
examining whether the computed natural frequencies are a minimum at the computed
natural modes.

4. CONCLUSIONS

A variational formulation of the Rayleigh–Ritz method is presented. The stationarity
of the natural frequencies at the natural mode is examined. It is found that the natural
frequencies need not be minimum with respect to the arbitrary coefficients in the linear
combination of the assumed deflection functions. However, the natural frequencies are a
minimum at the natural modes. When the number of natural modes used to represent the
deflection function is limited, the natural frequencies are maximum with respect to higher
modes, which is due to the reduction in accuracy in representing the deflection function.
The accuracy of the computed natural frequencies by energy techniques such as the
Rayleigh–Ritz, Galerkin, and finite element methods can be checked by examining whether
the computed natural frequencies are minimum at the corresponding computed natural
modes.
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